Methods for Projecting CO2 Emissions in Southeast Asia

Kyle Chen

The Problem

- Developing Cities and Carbon Emissions
- Harms
- Climate Change
- Pollution
- Mapping CO2 Emissions by city area
- CO2 Emissions Projections

Methods

- Mapping CO2 Emissions by Population and by Nighttime Lights
- Carbon Dioxide Prediction by Region
- Relation of Zipf's Law and the Pareto Principle

Mapping CO2 Emissions by Population and by Nighttime Lights

- Variance between the models
 - \circ 0 \leq |NTL PPP| \leq 250 \leq max
- May need to use both to obtain limit per pixel

(Gaughan et. al, 2019)

Figure 5. Per pixel differences in CO_2 emissions estimates produced using only nighttime light intensity, minus those produced using population estimates (per capita emissions). Units are expressed in tonne carbon/year/grid cell and results are separated by the years 2000 (a), 2005 (b), and 2010 (c).

Carbon Dioxide Prediction by Region

- BKT, PBL, DSI
 - Indonesia, Port Blair (India), Dongsha
 Island (South China Sea)
- BKT: R = 0.3
- PBL: R = 0.81
- DSI: R = 0.9

Observed v.s. Simulated Mean Seasonal CO2 Emissions Cycles for 39-layer models (Standard Prediction Model: Blue, China-India Prediction Model: Red) (Lin et al., 2018)

Relation of Zipf's Law and the Pareto Principle

- Internal v.s. External Complexity
- CO2 Emissions to City Population Size

 \rightarrow

• CO2 Emissions to Number of Cities **Table 1.** The numerical relation between the capacity dimension and the correlation dimension.

Pareto exponent (D ₀)	Correlation dimension (D ₂)	Zipf exponent (d ₀)	Zipf's correlation exponent (d ₂)	_
0.5	0	2	3	
0.6	0.2	1.667	2.333	$P_1 - P_1 k^{-d}$
0.7	0.4	1.429	1.857	$\mathbf{I}_{K} = \mathbf{I}_{1}\mathbf{K}$
0.8	0.6	1.250	1.500	
0.9	0.8	1.111	1.222	$1 \int_{-\infty}^{\infty} -D_0 \left(-D_0 \right) $
1	1	1	1	$C(\lambda r) = \frac{1}{N^2} \int s^{-D_0} (s - \lambda r)^{-D_0} ds$
1.1	1.2	0.909	0.818	$N^2 J_{-\infty}$
1.2	1.4	0.833	0.667	1 000
1.3	1.6	0.769	0.538	$1 \int_{-\infty}^{\infty} (2\pi)^{-D_0} (2\pi) - D_0 d^{-D_0} d$
1.4	1.8	0.714	0.429	$= \frac{1}{N^2} \int_{-\infty} (\lambda y) \delta(\lambda y - \lambda r) \delta \mathbf{d}$
1.5	2	0.667	0.333	
1.6	2.2	0.625	0.250	$1 - 2D_0 - C(x)$
1.7	2.4	0.588	0.176	$= \lambda^{2} - \frac{2}{C} C(r)$
1.8	2.6	0.556	0.111	
1.9	2.8	0.526	0.053	
2	3	0.500	0	(Chen, 2011)

Note: The bold denotes the rational intervals of the scaling exponent values. doi:10.1371/journal.pone.0024791.t001

Plan for Further Investigation

- Development of a predictive model: relationship between population and CO2 increase
 - Zipf's Law and Pareto Principle
 - Obtain relationship between carbon emissions and population growth using NTL and PPP models as basis
- Find way to map of projected physical city population growth in Southeast Asia

References

Gaughan, Andrea E, Oda, Tomohiro, Sorichetta, Alessandro, Stevens, Forrest R, Bondarenko, Maksym, Bun, Rostyslav, . . . Nghiem, Son V. (2019). Evaluating nighttime lights and population distribution as proxies for mapping anthropogenic CO2 emission in Vietnam, Cambodia and Laos. Environmental Research Communications, 1(9), Environmental Research Communications, 2019-09-11, Vol.1 (9).

Lin, Xin, Ciais, Philippe, Bousquet, Philippe, Ramonet, Michel, Yin, Yi, Balkanski, Yves, . . . Zhou, Lingxi. (2018). Simulating CH 4 and CO 2 over South and East Asia using the zoomed chemistry transport model LMDz-INCA. Atmospheric Chemistry and Physics, 18(13), 9475-9497.

Chen, Yanguang. (2011). Modeling fractal structure of city-size distributions using correlation functions. PloS One, 6(9), E24791.